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~— Motivation

Stop search

C Pair-produced supersymmetric top partners in a compressed regime
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C Standard observablessuchag§ , O etc. Y hard to separate/distinguish signal events

from background ones
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~— Motivation

Stop search

C Cleverobservablessuchad and0
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C Still hopeless to suppress background events while keeping a large number of signal ones
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~— Motivation

Stop search using!  variables

C More clever (signal/background-targeted) observables (implementing characteristic

features of signal/background): E.g.0 variables
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Great for probing challenging region




: Variables

Definition

C 0 variables as (3+1) dimensional analogue of the (2+1) dimensional variable:
minimization of the two invariant mass quantities constructed with visible particles over

the unknown invisible momenta  subject to relevantconstraints [ Cho, Gainer, DK, Matchev,
Moortgat , Pape,and 0 AOER OYn
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BT rahles

Why minimize?

A A G OOARI T OCOOA00 OFA CEEAT RO G B
C Ingeneral, # of unknowns > # of constraints
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Constraints

C Targeting at odflike event topology
V MET condition relating the two decay sides: linear constraint, easily
absorbed/implemented
V On-shell intermediate states with same mass (viafull momentum ansatzfor invisible
particles): non-linear constraints, (in general) highly non-trivial to implement/perform

constrained minimization
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~ Constrained minimization

Problem definition

Min f(x) subjectto ¢;(x) =0 Xx¥R"i=1, 2, €, m nj>m

C f(x): objective function
C x: variables to be minimized over

C ci(x): in general, inequality constraints possible

C Some constraints can be easily solved/reduced.
U Linear constraints: Ex) MET inM,
0 Some nonlinear constraints: Ex) xy2=1through polar coordinate

C In general, this is not the case!
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~ Constrained minimization

Basic/conceptual algorithm

C Schematically, from aninitial guess the solution evolves by somepreferred algorithms

until it satisfies some convergence criteria
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C Optimality (first order derivative)
T Qo) m
C Convexification (second order derivative)
W, R In R e
C Feasibility
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~ Constrained minimization

Basic algorithm

C Conceptually trivial, but not machine -friendly

U Convexification sufficient for the hyper-surface defined by the constraints!

U Hard to perform for the computer

»

] Surface defined by constraints

True minimum

C Find transformation/modification of
constrained min. Y unconstrained min.

to guarantee theconvexification in all

directions.
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~ Unconstrained minimization

Method of Lagrange multipliers

C Formally, the stationary points Y KKT conditions x* for the solution”
ww) T
P o) o) w
C Lagrange multiplier methods reproduce
the KKT conditions successfully
0h) "o _gom

C Convexification not guaranteed in the

direction normal to the surface defined

by the constraints 2

C Successful, but difficult to examine theconvexification numerically

U Modification on the objective function
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~ Unconstrained minimization

Quadratic penalty method (QPM)

f A
C Intuitively, enforced to be convexified in all directions
O(ch) "B —ow * 7
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C Penalty parameter decreases

as subminimizations are performed
C However, for a very small penalty parameter,
too sensitive tow o : ill -conditioning %

U Not make it too small but keep the good properties

X1
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~ Unconstrained minimization

Augmented Lagrangianmethod (ALM)

C Add Lagrange multipliers

@) AW gl —ho

C KKT conditions and convexification guaranteed

0 g ey

C Penalty parameterdecreases &
Lagrange multipliers also evolves,
as subminimizations are performed

C Without too small penalty parameter,

can be approximated to_": no ill-conditioning
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P NUIT

Tool for the unconstrained minimization

C Remaining job is to find a (at least) reasonable unconstrained minimization tool!
C We choose MINUIT framework
U Could exist better options

U Has been used inand-outside HEP community

C Among minimization schemes, we use MIGRAD and SIMPLEX
U MIGRAD: good at folded profile, 0 develops folded regions

U SIMPLEX: good at shallowprofile, 0 develops shallow regions
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~ Implementing the algorithm

Flow chart

Initiate minimizer/tolerance/penalty term/ Lagrangianmultiplier

Minimization: MIGRAD and SIMPLEX+MIGRAD

A 4

Convergence test: optimality and feasibility

A 4

Pass test? or Too many iterations?

Set minimizer/Tighten tolerance/Evolve penalty&Lagrangianterms yes

End iterations

s
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~ Validity of the algorithm

Results (preliminary)

C 0 yVs.0 4 gtest of the reliability of the constrained minimization with odlsample
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T /——\
Validity of the algorithm

7&

® Results (preliminary)

C 0 . ginternal test of the accuracy between two independently implemented codes

Subsystem (ab): fi=0 GeV
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